Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 18(10): e1010489, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36206315

RESUMEN

Like other congregate living settings, military basic training has been subject to outbreaks of COVID-19. We sought to identify improved strategies for preventing outbreaks in this setting using an agent-based model of a hypothetical cohort of trainees on a U.S. Army post. Our analysis revealed unique aspects of basic training that require customized approaches to outbreak prevention, which draws attention to the possibility that customized approaches may be necessary in other settings, too. In particular, we showed that introductions by trainers and support staff may be a major vulnerability, given that those individuals remain at risk of community exposure throughout the training period. We also found that increased testing of trainees upon arrival could actually increase the risk of outbreaks, given the potential for false-positive test results to lead to susceptible individuals becoming infected in group isolation and seeding outbreaks in training units upon release. Until an effective transmission-blocking vaccine is adopted at high coverage by individuals involved with basic training, need will persist for non-pharmaceutical interventions to prevent outbreaks in military basic training. Ongoing uncertainties about virus variants and breakthrough infections necessitate continued vigilance in this setting, even as vaccination coverage increases.


Asunto(s)
COVID-19 , Personal Militar , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Brotes de Enfermedades/prevención & control , Estudios de Cohortes
2.
J Infect Dis ; 226(10): 1743-1752, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-35543272

RESUMEN

BACKGROUND: Laboratory screening for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key mitigation measure to avoid the spread of infection among recruits starting basic combat training in a congregate setting. Because viral nucleic acid can be detected persistently after recovery, we evaluated other laboratory markers to distinguish recruits who could proceed with training from those who were infected. METHODS: Recruits isolated for coronavirus disease 2019 (COVID-19) were serially tested for SARS-CoV-2 subgenomic ribonucleic acid (sgRNA), and viral load (VL) by reverse-transcriptase polymerase chain reaction (RT-PCR), and for anti- SARS-CoV-2. Cluster and quadratic discriminant analyses of results were performed. RESULTS: Among 229 recruits isolated for COVID-19, those with a RT-PCR cycle threshold >30.49 (sensitivity 95%, specificity 96%) or having sgRNA log10 RNA copies/mL <3.09 (sensitivity and specificity 96%) at entry into isolation were likely SARS-CoV-2 uninfected. Viral load >4.58 log10 RNA copies/mL or anti-SARS-CoV-2 signal-to-cutoff ratio <1.38 (VL: sensitivity and specificity 93%; anti-SARS-CoV-2: sensitivity 83%, specificity 79%) had comparatively lower sensitivity and specificity when used alone for discrimination of infected from uninfected. CONCLUSIONS: Orthogonal laboratory assays used in combination with RT-PCR may have utility in determining SARS-CoV-2 infection status for decisions regarding isolation.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Prueba de COVID-19 , Sensibilidad y Especificidad , ARN , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Open Forum Infect Dis ; 8(9): ofab407, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34514020

RESUMEN

BACKGROUND: Significant variability exists in the application of infection control policy throughout the US Army initial entry training environment. To generate actionable information for the prevention of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/coronavirus disease 2019 (COVID-19) transmission among new recruits, active enhanced surveillance was conducted for evidence of and exposure to SARS-CoV-2/COVID-19. METHODS: We serially tested recruits with a reverse transcriptase polymerase chain reaction (RT-PCR) COVID-19 and/or total antibody to SARS-CoV-2 tests at days 0, 14, and week 10 upon arrival for basic combat training at a location in the Southern United States. RESULTS: Among 1403 recruits who were enrolled over a 6-week period from August 25 through October 11, 2020, 84 recruits tested positive by RT-PCR, with more than half (55%, 46/84) testing positive at arrival and almost two-thirds (63%, 53/84) also testing seropositive at arrival. Similarly, among an overall 146 recruits who tested seropositive for SARS-CoV-2 during the period of observation, a majority (86%) tested seropositive at arrival; no hospitalizations were observed among seropositive recruits, and antibody response increased at week 10. CONCLUSIONS: These findings that suggest serological testing may complement current test-based measures and provide another tool to incorporate in COVID-19 mitigation measures among trainees in the US Army.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...